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NASA TECHNICAL MEMORANDUM

THE CHARGED PARTICLE RADIATION ENVIRONMENT FOR AXAF

I. INTRODUCTION

The Advanced X-Ray Astrophysics Facility (AXAF) will be subject to several
sources of radiation during its 15-year orbital lifetime: geomagnetically—trapped electrons
and protons, galactic cosmic ray particles, and solar flare events (see Noll and McElroy,
1975 for an overview of the near-earth radiation environment). The purpose of this report
is to estimate these radiation levels for the AXAF orbit (nominal altitude= 320 n.mi. = 600
km, inclination = 28.5°) for use in the design of the observatory's science instruments.

II. THE RADIATION ENVIRONMENT
A. Geomagnetically-Trapped Charged Particles

Estimates of trapped proton and electron irradiation in the AXAF orbit were
obtained from the AP8 and AE8 environments (Sawyer and Vette, 1976; Teague and Vette,
1974; Teague, Chan, and Vette, 1976) with separate calculations for maximum and
minimum levels of solar activity. The particle fluxes are calculated in both differential and
integral form, and are presented in Figures 1-4 and Tables 1 and 2. Note that the fluxes
presented here are average values, and that the instantaneous flux can deviate greatly from
the mean (see section III). The variation of particle flux with altitude and orbital inclination
is discussed by Watts and Wright (1976).

B. Solar Flare Events

Solar flares are relatively rare and unpredictable events which can be copious
sources of high energy particles; for example, three solar flares during the fall of 1989
delivered a total of ~7 x 109 protons cm-2 (Withbroe, 1989). The geomagnetic field will
effectively shield AXAF from the solar flare proton flux, but this geomagnetic shield is
much less effective for heavy solar flare particles, which are only partially ionized (see
Adams, 1986, sections 2.1 and 8.0).

C. Cosmic Rays

The galactic cosmic ray flux in free space (outside the geomagnetosphere) is
approximately 4 particles em-2 s-1 (Burrell and Wright, 1972). This flux is reduced during
the active part of the solar cycle and, in the AXAF orbit, the low energy portion of the
spectrum will be attenuated by the geomagnetic field. The cosmic ray flux is orders of
magnitude smaller than the geomagnetically-trapped proton and electron fluxes (see section
I1.a), but the cosmic ray spectrum has an abundance of high-energy particles and heavy
ions which are not easily attenuated by shielding. The effects of these highly penetrating



cosmic rays on spacecraft microelectronics are si gnificant, and can be evaluated using the
methods described by Adams (1986).

D. Shielding

Figure 5 presents a schematic diagram of the radiation shielding provided by the
AXAF observatory. The spacecraft “cradle” and the High Resolution X-Ray Mirror
Assembly (HRMA) will both provide substantial shielding, but much of the observatory
consists only of an open frame covered by a thin thermal blanket. In particular, there is
very little shielding on the outer side or back of the science instrument compartment; most
of the radial and rear-facing shielding will be provided by the science instrument itself,

Simple shielding calculations are presented for a point detector inside a spherical shell
in Figures 6 and 7 and in Tables 3 and 4. The figures present total dose curves, which
include ionization by primary protons and electrons (see Tables 3 and 4) as well as energy
deposition from secondary protons, alpha particles from primary protons, and electron-
induced Bremsstrahlung (Burrell, 1964; Watts and Burrell, 1971). The trapped proton
component is dominant for most practical shield thicknesses, from 1.0 to 30 g/cm2, More
detailed calculations can be done using the compilations of energy loss and penetration data
for protons (Janni, 1966) and for electrons and Bremsstrahlung radiation (Watts and
Burrell, 1971; Berger and Seltzer, 1964).

III. RELIABILITY

It is important to understand the limitations of the present models. The
geomagnetically-trapped charged particle models are based on data that were taken more
than a decade ago, and are estimated to be uncertain by at least a factor of 3. Additional
uncertainties arise from the fact that the present models are averaged over space and time,
For example, nearly all of the trapped particle flux is encountered as the spacecraft passes
through the South Atlantic Anomaly. The orientation of the observatory can also yield
particle fluxes very different from the 'omnidirectional’ values presented here, since the
angular distributions of trapped particles are pancake shaped, with most of the particles
arriving from directions perpendicular to the earth's magnetic field lines. In the presence of
heavy shielding, the radiation dose can be further increased by cosmic ray particle cascades
which are not included in the present calculations. In view of these uncertainties, it would
be prudent to conservatively design the AXAF detectors and electronics to withstand
radiation levels several times higher than those estimated here.
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Table 3. Proton Dose Rates vs. Shielding Thickness in the AXAF Orbit

Shield Thickness

Ag/cmA2]
0.00
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.5
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

Solar Maximum Solar Minimum
Total Dose Primary Dose Total Dose Primary Dose
[Rad/day] [Rad/day] [Rad/day] [Rad/day]

2.12 2.12 3.24 3.24
2.11 2.11 3.22 3.22
2.10 2.10 3.21 3.21
2.10 2.10 3.20 3.20
2.09 2.09 3.19 3.19
2.08 2.08 3.17 3.17
2.07 2.07 3.16 3.16
2.06 2.06 3.15 3.15
2.05 2.05 3.14 3.14
2.04 2.04 3.13 3.13
2.04 2.04 3.11 3.11
1.96 1.96 3.02 3.02
1.88 1.88 2.90 2.90
1.81 1.81 2.81 2.81
1.75 1.75 2.73 2.73
1.70 1.70 2.66 2.66
1.65 1.65 2.60 260
1.61 1.61 2.54 2.54
1.58 1.58 2.49 2.49
1.54 1.54 2.45 2.44
1.30 1.30 2.09 2.09
1.17 1.16 1.89 1.88
1.10 1.09 1.77 1.76
1.04 1.04 1.68 1.67
0.997 0.991 1.61 1.60
0.959 0.952 1.54 1.53
0.926 0919 1.49 1.48
0.898 0.890 1.44 1.43
0.873 0.864 1.40 1.39
0.782 0.770 1.25 1.23
0.718 0.704 1.14 1.12
0.628 0.610 0.989 0.960
0.566 0.543 0.878 0.844
0.516 0.491 0.792 0.754
0.476 0.448 0.722 0.680
0.441 0.411 0.633 0.618
0.411 0.379 0.613 0.566
0.384 0.351 0.568 0.519
0.360 0.326 0.528 0.478



Table 4. Electron Dose Rates vs. Shielding Thickness in the AXAF Orbit

Solar Maximum Solar Minimum
Shield
Thickness Primary Dose Brems. Dose  Total Dose Primary Dose Brems. Dose Total Dose
[g/cmA2]  [Rad/dayl [Rad/dayl [Rad/dayl [Rad/day] _[Rad/dayl IRad/dayl

0.00 3510. 3510. 1450. 1450.
0.001 1870. 1870. 726. 726.
0.002 1200. 1200. 429. 429.
0.003 879. 879. 292. 292.
0.004 759. 759. 243. 243.
0.005 694. 694. 219. 219.
0.006 643. 643. 200. 200.
0.007 598. 598. 184. 184.
0.008 557. 557. 170. 170.
0.009 519. 519. 157. 157.
0.010 484. 484. 145. 145.
0.02 252. 0.0079 252. 70.2 0.0024 70.2
0.03 152. 0.0066 152. 42.7 0.0020 42.7
0.04 99.6 0.0060 99.6 29.4 0.0019 29.4
0.05 67.2 0.0057 67.2 21.2 0.0018 21.2
0.06 46.6 0.0054 46.6 15.9 0.0017 159
0.07 33.4 0.0051 334 12.3 0.0016 12.3
0.08 24.7 0.0050 24.7 9.76 0.0015 9.76
0.09 18.8 0.0048 18.8 7.90 0.0015 7.90
0.1 14.7 0.0047 14.7 6.53 0.0014 6.53
0.2 2.79 0.0038 2.79 1.71 0.0012 1.71
0.3 0.991 0.0034 0.994 0.702 0.0010 0.70
0.4 0.491 0.0031 0.494 0.366 0.0010 0.36
0.5 0.283 0.0029 0.286 0.215 0.0009 0.21
0.6 0.173 0.0027 0.176 0.132 0.0008 0.13
0.7 0.109 0.0026 0.111 0.0831 0.0008 0.083
0.8 0.0690 0.0025 0.0715 0.0528 0.0007 0.053
0.9 0.0434 0.0024 0.0458 0.0333 0.0007 0.034
1.0 0.0267 0.0023 0.0290 0.0205 0.0007 0.021
1.5 0.0010 0.0019 0.0030 0.0008 0.0006 0.001
2.0 1.3e-05 0.0017 0.0017 1.02¢-05  0.0005 0.0005
3.0 0.0014 0.00146 0.0004 0.0004
4.0 0.0012 0.00124 0.0003 0.0003
5.0 0.0010 0.00107 0.0003 0.0003
6.0 0.0009 0.00092 0.0002 0.0002
7.0 0.0008 0.00080 0.0002 0.0002
8.0 0.0007 0.00070 0.0002 0.0002
9.0 0.0006 0.00062 0.0001 0.0001

10.0 0.0005 0.00054 0.0001 0.0001
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Integrated Electron Flux [Energy > E1]
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